SEANEIG

<>

NATIONAL TECHNICAL UNIVERSITY OF
ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

S

2
Bl

MHOEVS -

DivisioNn oF COMPUTER SCIENCE

{n,

.‘A(\"

R A
1- ?‘- A\
] :,;a-‘.".:
>

npo.
A

H
-lj'!l!!Pq’oro

|

Parallelizing Concuerror: A Dynamic Partial Order
Reduction Testing Tool for Erlang Programs

Diploma Thesis

PANAGIOTIS FYTAS

Supervisor : Konstantinos Sagonas
Associate Professor NTUA

Athens, November 2018

NATIONAL TECHNICAL UNIVERSITY OF
ATHENS

ScHooL oF ELECTRICAL AND COMPUTER ENGINEERING
DivisioNn oF COMPUTER SCIENCE

W

. “\’
=
Db
7 npomp
X :
nvp$opo

v
OEVS .
Bl

&

Parallelizing Concuerror: A Dynamic Partial Order
Reduction Testing Tool for Erlang Programs

Diploma Thesis

PANAGIOTIS FYTAS

Supervisor : Konstantinos Sagonas

Associate Professor NTUA

Approved by the examining committee on the November 01, 2018.

Konstantinos Sagonas Nikolaos S. Papaspyrou Nectarios Koziris
Associate Professor NTUA Associate Professor NTUA Professor NTUA

Athens, November 2018

Panagiotis Fytas

Electrical and Computer Engineer

Copyright © Panagiotis Fytas, 2018.
All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or
in part for commercial purposes. Permission is hereby granted to reproduce, store and
distribute this work for non-propfit, educational and research purposes, provided that
the source is acknowledged and the present copyright message is retained. Enquiries
regarding use for profit should be directed to the author.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
National Technical University of Athens.

Abstract

Testing and verifying concurrent programs is quite a daunting task. Due to the non-
determinism of the scheduler, errors can occur only on specific process interleaving se-
quences and therefore, all possible different schedulings should be examined. Currently,
one of the most practical methods of dealing with the combinatorial state space explosion
of this problem is a technique called Dynamic Partial Order Reduction (DPOR). As parallel
processing has become the dominant paradigm in modern computer systems, developing
parallel versions of DPOR algorithms is essential for scaling those algorithms to modern
platforms.

This diploma thesis is concerned with the parallelization of Concuerror, a stateless
model checking tool that uses various DPOR techniques for testing and verifying concurrent
Erlang programs. Specifically, we have focused on developing parallel versions for the
main DPOR algorithms implemented in Concuerror: source-DPOR and optimal-DPOR,
and on modifying Concuerror, in order to be able to explore different interleavings in
parallel. Also, we have evaluated the speedup and scalability of our implementation on
certain benchmarks that are widely used for evaluating DPOR algorithms. Specifically, our
implementation manages to achieve significant speedups, and, depending on the test case,
scale up to 32 parallel workers.

Key words

Stateless Model Checking, Systematic Concurrency Testing, Dynamic Partial Order Reduc-
tion, Parallelization, Concurrency, Erlang

Acknowledgements

Panagiotis Fytas,
Athens, November 01, 2018

This thesis is also available as Technical Report CSD-SW-TR-1-16, National Technical University of
Athens, School of Electrical and Computer Engineering, Department of Computer Science, Software
Engineering Laboratory, November 2018.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

Contents

Abstract. 5
Acknowledgements 7
Contents L 9
List of Tables 11
List of Figures 13
List of Listings 15
List of Algorithms 17
1. Introduction 19
1.1 Aim of this Thesis oo o 19
1.2 Overview e e 20

2. Preliminaries. 21
2.1 The Erlang Language 21
2.1.1 Concurrent Erlang oo oo 21

2.1.2 Distributed Erlang 0 o000 21

2.2 Testing Concurrent Programs 22
2.3 Framework 22
2.3.1 Abstraction Model o o oo oo 23

2.3.2 Event Dependencies00 23

2.3.3 Independence and Races 24

2.4 Concuerror OVerview v vttt 25
2.4.1 Instrumentero e 25

2.4.2 Scheduler oo e 25

2.4.3 Logger e 25

3. Dynamic Partial Order Reduction 27
3.1 Basic DPOR Concepts e 27
3.2 Source Sets e 28
3.3 Source-DPOR e 28
3.4 Wakeup Trees o e 29
3.4.1 Operations on Wakeup Trees 30

3.5 Optimal-DPOR 30

4. Parallelizing source-DPOR Algorithm 33
41 Existing Work e 33
4.2 Parallel source-DPOR L o o 34

421 Basicldea oo 34
422 Algorithm 35
4.2.3 Load Balancing oo oo 37
4.2.4 A Simple Example oo oo 37

5. Parallelizing optimal-DPOR Algorithm 41

5.1 Parallel optimal-DPOR - A First Attempt 41
541 BasicIdea oo 41
5.1.2 Algorithm e 42
5.1.3 Example. e 44
5.1.4 Performance Evaluation 46
5.1.5 Performance Analysis 0oL 47

5.2 Scalable Parallel optimal-DPOR 48
521 Basicldea oo 48
5.2.2 Algorithm 49

6. Implementation Details 0 L. 51
6.1 Dealing with Processes 51
6.2 Execution Sequence Replay 52

7. Performance Evaluation00 0L 55
7.1 Tests Overview o ottt e e e 55
7.2 Performance Results L 55
7.3 Performance Analysis L o 58
7.4 Final Comments 60

8. Concluding Remarks 61

Bibliography 63

10

List of Tables

5.1 Parallel optimal-DPOR performance.

7.1 Sequential performance of source-DPOR and optimal-DPOR on four bench-

11

List of Figures

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

7.1
7.2
7.3
7.4
7.5

7.6
7.7

Simple readers-writes example L0 0oL 37
Interleavings explored by the sequential source-DPOR. 38
Initial interleaving explored by the parallel algorithm. 38
Exploration of the assigned traces by each scheduler. 39
Execution Tree if Scheduler 1 returned first. 40
Lastzero 2 example Lo e 44
Interleavings explored by the sequential optimal-DPOR 44
Initial interleaving explored by the parallel optimal-DPOR 45
Execution time for readers 10 by optimal-DPOR. 46
Planner Queue and Frontier sizes for the execution of lastzero. 47
Performance of readers 15 with Budget of 10000. 56
Performance of readers 15 with budget of 30000. 56
Performance of rush hour with Budget of 10000 for source and 30000 for

optimal. 57
Performance of lastzero 11 with Budget of 10000 for source and 30000 for

optimal. e e 57
Performance of indexer 17 with Budget of 10000 for source and 30000 for

optimal. 58

Number of times schedulers stopped their execution with a Budget of 10000. 59
Number of times schedulers stopped their execution with a Budget of 30000. 60

13

List of Listings

6.1 Environment variables

15

List of Algorithms

1 Source-DPOR 28
2 Optimal-DPOR o 31
3 Controller Loop e 35
4 Frontier Partitioning L o e 35
5 Scheduler Exploration Loop 36
6 Handling Scheduler Response 36
7 Controller for optimal-DPOR - First Attempt 42
8 Optimal Frontier Partitioning 43
9 Handling Scheduler and Planner Response 43
10 Optimal Frontier Partitioning - Scalable Algorithm 49
11 Scheduler Exploration Loop - Scalable optimal-DPOR 50

17

Chapter 1

Introduction

Nowadays, the necessity for concurrency is undeniable. As multithreaded architectures
have prevailed on modern systems, concurrent programming is essential for scaling soft-
ware to modern hardware and speeding up the execution time of programs. Apart from
that, through concurrency, it becomes possible for long-running tasks to not delay short
running ones and consequently, concurrent programs offer an increased availability of
services making them essential for numerous applications, such as web services.

Nevertheless, due to the fact that concurrent processes and threads share resources
and have to communicate with each other, concurrent programming is a more challenging
endeavor, compared to sequential programming. To make matters worse, processes are
scheduled in a non-deterministic manner, which can lead to errors that may occur only
on specific rare interleavings. Therefore, concurrency bugs can be extremely hard to
detect and reproduce, making techniques such as unit testing, ineffective in detecting such
errors. Testing and verifying concurrent programs requires the systematic exploration of
all possible interleavings (or at least a sufficient subset of those).

Advances made in model checking have led to Stateless Model Checking [Gode97], which
systematically explores the state space of a given program, without storing the global states,
in order to verify that each reachable state satisfies a given property. Stateless model check-
ing is a practical approach that does not have large memory requirements and has been
implemented in tools such as Verisoft [Gode05]. Still, this technique suffers from combina-
torial explosion. However, different interleavings that can be obtained from each other by
swapping adjacent and independent execution steps, can be considered equivalent. Partial
Order Reduction (POR) [Gode96, Clar99, Valm91] algorithms utilize this observation to
successfully diminish the size of the explored state space. Dynamic Partial Order Reduc-
tion (DPOR) [Flan05, Abdu14] algorithms manage to achieve an even increased reduction,
by detecting dependencies more accurately. DPOR techniques have been successfully im-
plemented in tools like Concuerror [Chril3, Goto11], Nidhugg [Abdu15], Inspect [Yang07]
and Eta [Sims11].

Parallelizing DPOR algorithms is essential in order to make them scalable to mod-
ern computer architectures, but also to potentially achieve significant speedups that will
alleviate the effect of the exponential state space explosion. The parallelization of DPOR al-
gorithms that use persistent sets [Flan05, Lei06, Valm91] has already been been examined
and parallel versions have been implement for Inspect [Yang08] and Eta [Sims12].

1.1 Aim of this Thesis

On this thesis, we are going to focus on the parallelization of Concuerror, a stateless model
checker used for testing concurrent Erlang programs. Specifically, we are going to:

e Develop parallel versions for two DPOR algorithms: source-DPOR [Abdul4] and
optimal-DPOR [Abdu14].

19

e Implement those parallel algorithms in Concuerror.

e Evaluate the performance of our implementation.

1.2 Overview

In Chapter 2 we provide basic background information concerning Erlang, Concuerror
and the abstraction used to model concurrent systems. In Chapter 3 we describe the
sequential source-DPOR and optimal-DPOR algorithms. In Chapters 4 and 5 we present
the parallel version we have developed for source-DPOR and optimal-DPOR, respectively.
In Chapter 6 we describe the main issues we encountered while implementing our parallel
algorithms in Concuerror. In Chapter 7 we present and evaluate the performance achieved
by our implementation. Finally, in Chapter 8 we summarize the previous chapters and we
examine possible extensions of our work.

20

Chapter 2

Preliminaries

2.1 The Erlang Language

Erlang is a declarative programming language with built-in support for concurrency, dis-
tribution, fault-tolerance, on-the-fly code reloading and automatic memory management.
Erlang was initially developed by Ericsson in 1986 with the purpose of programming in-
dustrial telecommunications systems. However, it was later realized that it was also suitable
for soft real-time applications [Vird96]. In 1998, Erlang/OTP (Open Telecom Platform) was
released as open source and since then has been used commercially by various companies,
including Ericsson, for a wide variety of large-scale applications.

2.1.1 Concurrent Erlang

The main strength of Erlang stems from its built-in concurrency support. In the core
of this are the lightweight Erlang processes, each having its own program counter, pro-
cess dictionary and call stack. Additionally, Erlang implements its processes through the
runtime system of BEAM (the VM of Erlang) and therefore they are not mapped to OS
threads. These processes use minimal memory, can be task switched extremely fast, can
run in parallel and thousands of them can exist in a single machine. A process is identified
globally by its Pid (process identifier).

Erlang concurrency is mainly based on message passing, since the state of Erlang
processes is (“mostly”) not shared. As such, the operator ‘‘!” can be used to asynchronously
send messages between processes, which can be of any datatype. The message is placed on
the “mailbox” (a message queue) of the receiving process, until it is extracted by a receive
expression. The receive expression uses pattern matching to scan the mailbox in a FIFO
order for a message that matches that pattern. If no such message is found, the receiving
process is blocked at the receive, waiting for a new message to be sent or for a timeout to
occur, in case the receive expression had an after part.

Starting a process can be done efficiently through the BIF (built-in function) (spawn/1)
(and its variants). By calling this function a new concurrent erlang process is created in
order to evaluate the function specified at the arguments of spawn. The Pid of this new
process is the return value of the spawn function.

It is often claimed that Erlang has no shared memory between different processes
[Arms07] and inter-process communication is solely based on message passing. However,
that is not entirely true since it is possible for different processes to access the same memory
through the ETS (Erlang Term Storage) module.

2.1.2 Distributed Erlang

An Erlang node is an Erlang runtime system containing a complete virtual machine which
contains its own address space and set of processes [Arms07]. A node is assigned to a
name of the form “name@host”. Erlang nodes can connect with each other using cookies

21

and they can communicate over the network. Pids continue to be unique over different
nodes(globally). However, inside two different nodes, two different processes can have the
same local Pid.

Distributed Erlang Programs can run on different nodes. An Erlang process can be
spawned on any node, local or remote. All primitives (““I”, receive, etc.) operate over the
network similarly as they would on the same node.

2.2 Testing Concurrent Programs

Testing a concurrent program is significantly more challenging than testing a sequential
one. The main reason behind this increased difficulty, is the non-deterministic way in which
processes and threads are scheduled by computers. On a given input, a concurrent program
may lead to different results depending on how its processes were scheduled. Specifically,
errors can exist only on particular interleavings, that may have a small probability of
occurring, making normal testing methods ineffective in detecting the existence of such
bugs. Therefore, in order to test and verify concurrent programs it is essential that all
possible interleavings are explored. Model Checking does this by exploring the complete
state space of a program. In realistic scenarios, this approach is extremely inefficient, since
storing the state of each process can have extreme memory requirements [Gode97]. Stateless
Model Checking solves this issue by using a run-time scheduler to navigate the complete
(reachable) state space without storing the actual state of the processes. Nevertheless, the
number of possible interleavings increases exponentially with the length of the program
and therefore, this method suffers from combinatorial explosion.

However, the complete set of possible interleavings does not need to be explored, since
different interleavings can be equivalent, as long as they can be obtained from each other
by reordering adjacent, independent execution steps. Such interleavings belong to the
same Mazurkiewicz trace [Mazu87]. As a result, only a single interleaving from each differ-
ent Mazurkiewicz trace needs to be examined in order to sufficiently test a program. This
observation is utilized by various Partial Order Reduction (POR) [Gode96, Clar99, Valm91]
techniques, which try to examine at most one interleaving from different Mazurkiewicz
traces in order to alleviate the state space explosion that occurs when testing larger pro-
grams.

POR algorithms try to avoid exploring redundant interleavings by maintaining infor-
mation regarding potential races between different processes. Such information can either
be gained by statically analyzing the code of the program [Kurs98], or by dynamically de-
tecting dependencies during the runtime of the program [Flan05]. Dynamic Partial Order
Reduction (DPOR) utilizes the latter technique and generally outperforms static POR, since
static information can be imprecise, which can lead to ineffective reduction of the state
space.

Still, most DPOR techniques, fail to always guarantee that an optimal amount of in-
terleavings gets fully explored (only one interleaving from each Mazurkiewicz trace), even
when coupled with other reduction techniques, such as sleep sets [Gode96]. Redundant
exploration can be reduced by using variations, such as source-DPOR [Abdul4], or even
altogether avoided, through optimal-DPOR [Abdu14].

2.3 Framework

Here we present the abstractions that we use to model concurrent systems as well as the
relations that occur in such a system [Abdul4].

22

2.3.1 Abstraction Model

Our abstraction system assumes concurrent programs have a finite amount of processes
and that the code executes deterministically. Additionally, the state space of the program
does not contain cycles and all execution sequences are considered to be finite (this does
not exclude execution sequences which are blocked due to a deadlock).

The complete execution of a process p (also refered to as an actor process) splits into
different execution steps, which are to be executed atomically. Each step combines a
singular global statement along with the local statements (that do not have any explicit
affect on the state of other processes) that take place before the next global statement. This
acts as an optimization by reducing the total execution steps that can be interleaved and
subsequently, the amount of interleavings that are to be examined [Gode97].

We use ¥ to denote the set of global states (s € ¥) and sy to denote the unique initial
state. If a process cannot continue, the execution of the processes is considered to block
in a state s. An execution sequence E of a system is a finite sequence of execution steps
of its processes that is performed from sy. Since each execution step is deterministic, an
execution sequence F is uniquely characterized by the sequence of processes that perform
steps in E. For instance, p.p.q denotes the execution sequence where first p performs two
steps, followed by a step of q. The sequence of processes that perform steps in E also
uniquely determines the global state of the system after E, which is denoted as s;g. For
a state s, let enabled(s) denote the set of processes p that are enabled in s (i.e., for which
execute p(s) is defined). We use . to denote concatenation of sequences of processes. Thus,
if p is not blocked after E, then E.p is an execution sequence.

An event of E is a particular occurrence of a process in E. We use (p,i) to denote
the iy, event of process p in the execution sequence E. In other words, the event (p, i) is
the 4y, execution step of process p in the execution sequence E. We use dom(FE) to denote
the set of events (p,i) which are in E, i.e., (p,i) € dom(F) iff E contains at least i steps
of p. We will use e,¢,... , to range over events. We use proc(e) to denote the process p
of an event e = (p,). If E.w is an execution sequence, obtained by concatenating £ and
w, then domg(w) denotes dom(E.w) dom(E), i.e., the events in E.w which are in w. As
a special case, we use next|g)(p) to denote domg)(p). The notation <g is used to denote
the total order between events in E, i.e. e <g ¢’ denotes that e occurs before ¢’ in E. We
use B/ < E to denote that the sequence E’ is a prefix of the sequence E.

2.3.2 Event Dependencies

Here we denote the happens-before relation between two events in an execution sequence
E, a vital concept in DPOR algorithms, by using the notation — . Specifically, the relation
e — €, where events e, ¢’ are in dom(E), means that e “happens-before” ¢’ in the execution
sequence . The DPOR algorithms presented here use the happens-before assignment,
which is a function that assigns such a “happens-before” relation to events in any execution
sequence. Usually, such a function is implemented using vector clocks [Matt88] to create
relations concerning accesses to the same variables or sending and receiving the same
message.

Definition 2.1. (Happens-Before Assignment)

A happens-before assignment, which assigns a unique happens-before relation —p to
any execution sequence E, is valid if it satisfies the following properties for all execution
sequences .

1. —p is a partial order on dom(E), which is included in <g.

2. The execution steps of each process are totally ordered, i.e., (p,i) —r (p,i + 1)
whenever (p,i+ 1) € dom(E).

23

3. If E’ is a prefix of F then —x and — 5 are the same on dom(E").

4. Any linearization E’ of —g on dom(FE) is an execution sequence which has exactly
the same “happens-before” relation — g as —g. This means that the relation —g
induces a set of equivalent execution sequences, all with the same “happens-before”
relation. We use E ~ E’ to denote that F and E’ are linearizations of the same
“happens-before” relation, and [E]~ to denote the equivalence class of E.

5. If E ~ E' then s = s (i.e., two equivalent traces will lead to the same state).

6. For any sequences E, E’' and w, such that E.w is an execution sequence, we have
E ~ FE' if and only if E.w ~' E'.w.

7. If p, ¢ and r are different processes, then if nextg(P) — gy, nextpy(r) and
next|p)(p) 7 E.p.q nert|gy)(q), then next|g)(p) —Ep.qr next|gpq(r).

For the happens-before relations that concern us the first six properties are fairly ob-
vious. As far as the seventh property is concerned, if the next step of p happens before
the next step of r after the sequence E, then the step of p still happens before the step
of r even when some step of another process, which is not dependent with p, is inserted
between p and r. This property is true in most practical computation models, such as the
message passing and shared memory systems that concern us. As a special case, properties
4 and 5 together imply that if we have two consecutive events e and ¢’ in E, such as that
e /g €, then they can be swapped without affecting the global state after the two events
have occured.

2.3.3 Independence and Races

Here we define the concept of independence between events of a computation. If E.p and
E.w are two execution sequences, then F = p{w denotes that E.p.w is also an execution
sequence such that next|g)(p) # Epw € for any e € domg) (w). To elaborate, £ = pOw
means that the next event of p would not “happen before” any event in w in the execution
sequence E.p.w. Simply, this notation states that p is independent with w after E. In the
special case when w contains only one process ¢, then E = p{q denotes that the next steps
of p and ¢ are independent after E. We use E [~ pJw to denote that F = pw does not
hold.

We use the notation w\p, where w is a sequence and p € w, to denote the sequence
w with its first occurrence of p removed, and w [p to denote the prefix of w up to but
not including the first occurrence of p. Considering an execution sequence E and an event
e € dom(E), we use pre(E,e) to denote the prefix of E up to, but not including, the event
e. We also use the notation notdep(e, E) to refer to the sub-sequence of E consisting of
the events that occur after e but do not “happen after” e (i.e., the events ¢’ that occur after
e such that e A €').

Intuitively, two events, e and ¢’ in an execution sequence E, where e occurs before ¢’
in FE, are in a race if

e ¢ happens-before ¢’ in E, and

e ¢ and €' are “concurrent”, i.e., there is an equivalent execution sequence E’' ~ E in
which e and ¢’ are adjacent.

We use the notation e <g ¢’ to denote that events e and ¢’ are in a race, or more formally,
that proc(e) # proc(e’), that e —p €/, and that there is no event ¢’ € dom(F), different
from ¢’ and e, such that e =g ¢’ —g €.

24

Let e <p ¢ denote that e < ¢/, and that the race can be reversed. Formally, if
E’' < F and e occurs immediately before ¢’ in E’, then proc(e’) was not blocked before the
occurrence of e. This concept is useful, because whenever a DPOR algorithm detects a race,
it will check whether the events in the race can be executed in the reverse order. Since the
events are related by the happens-before relation, this may lead to a different global state
and therefore the algorithm must try to explore a corresponding execution sequence.

2.4 Concuerror Overview

Concuerror [Chril3, Goto11] is a tool that uses various stateless model checking techniques
in order to systematically test an Erlang program, with the aim of detecting and report-
ing concurrency-related runtime errors. Specifically, Concuerror navigates the state space
of a program, under a given test suite with a specified input, to check whether certain
errors occur in specific interleavings or verify the absence of any errors. Such errors
include abnormal process exits, uncaught exceptions, assertion violations and deadlocks.
Concuerror’s functionality can be mainly described through its main components: the
Instrumenter, the Scheduler and the Logger.

2.4.1 Instrumenter

Concuerror instruments the code of a program without having to make modification to the
Erlang VM. Instead, it utilizes a source to source translation that adds preemptions points
to various points in the code of a program. When the execution of a program reaches a
preemption point, the process will yield its execution by blocking on a receive statement,
until a continuation message is sent from the Scheduler.

This makes it possible to control how the processes of a program are scheduled and
therefore, recreate a specific interleaving. Moreover, this allows for the modification of
specific BIFs that interact with the global state of a program, by inserting a preemption
point before such function calls and controlling their execution.

2.4.2 Scheduler

In order to explore the complete state space of a concurrent program, it is vital that we
are able to “force” specific schedulings (interleavings) of its processes. The Scheduler is
responsible for controlling the execution of the processes to produce the required inter-
leavings and at the same time check for and handle possible errors that may occur.

The scheduler is also responsible for determining which interleavings are to be checked.
This is done by implementing various DPOR algorithms (persistent-DPOR, source-DPOR,
optimal-DPOR). The default algorithm currently used by Concuerror is optimal-DPOR.
However, the user can specify the technique that Concuerror will use to search the state
space, through the --dpor option.

The functionality of the Scheduler can be divided into two main parts: the exploration
phase and the planning phase (in accordance to most DPOR algorithms, as described in
Chapter 3). The planning phase is responsible for determining which interleavings need
to be explored and the exploration phase is responsible for producing those interleavings.

2.4.3 Logger

Testing programs is useless without providing the user with information on how an error
was produced. This is the responsibility of the Logger. During its execution, the Sched-
uler logs information regarding the explored interleavings. The Logger is responsible for

25

compiling that information in order to print the trace of a scheduling that led to a po-
tential error. At the same time, when used in developer mode, the Logger is essential for
providing debugging information to Concuerror developers.

26

Chapter 3

Dynamic Partial Order Reduction

3.1 Basic DPOR Concepts

Generally, DPOR algorithms use a depth-first backtrack search to explore the state space of
a concurrent system. This exploration is driven by two basic concepts: persistent sets and
sleep sets, which make sure to explore a sufficient portion (at least one interleaving from
different Mazurkiewicz traces) of the state space, while trying to minimize any unnecessary
exploration.

Intuitively, a persistent set at a state s is (specific) subset of enabled(s) whose exploration
guarantees that all non-equivalent interleavings (from different Mazurkiewicz traces) will
be explored. This is vital in proving the correctness of Classic DPOR algorithms [Flan05],
on the assumption (that is taken into account by our abstraction) that our state space is
acyclic and finite. The way that such sets are constructed differs from paper to paper
[Flan05, Lei06, Valm91], and those variations can lead to different degrees of state space
reduction.

The sleep set technique, being complimentary to persistent sets (it does not contribute
to the soundness of algorithm), aims to further reduce the number of the explored inter-
leavings. A sleep set at an execution sequence E contains processes, whose exploration
would be redundant, preventing equivalent interleavings from being explored.

Specifically, after E.p has been explored, process p is added to the sleep set at . From
this point on, p will exist in any sleep set of an execution sequence of the form FE.w,
provided that E.w is also an execution sequence and E |= p{w. The processes in the sleep
set are not going to be executed from this point on, unless a dependency gets detected.
For instance, p will be removed from the sleep set at E.w.q if a dependency gets detected
between the next steps of ¢ and p.

It can be proved [Gode96] that sleep sets will eventually block all the redundant inter-
leavings and thus the only interleavings that are going to be explored fully will belong to
different Mazurkiewicz traces. However, this does not mean sleep sets avoid all redundant
explorations. To elaborate, sleep sets make it possible for the exploration of an interleaving,
which belongs to the same Mazurkiewicz trace as another interleaving that has already
been explored, to eventually block, by having all of its enabled processes appear in the
sleep set. This is called sleep-set blocking and it means that all possible traces, from this
point on, are redundant and therefore, need not be explored further. Sleep sets do not
guarantee optimality for a DPOR algorithm, since redundant traces get explored, albeit not
completely.

Source-DPOR [Abdul4] replaces persistent sets with source sets in order to achieve a
significantly better reduction in the amount of the explored interleavings. However, source-
DPOR still suffers from sleep-set blocking. Optimal-DPOR [Abdu14] combines the concept
of source sets with wakeup trees to fully avoid sleep-set blocking and lead to the exploration
of an optimal subset of interleavings.

27

3.2 Source Sets

Before defining source sets formally, we need to define the concepts of possible initial steps
in an execution sequence [Abdul4]:

Definition 3.1. (Initials after an execution sequence E.w, I[g)(w))

For an execution sequence E.w, let I[(w) denote the set of processes that perform events
e in domg)(w) that have no “happens-before” predecessors in domg)(w). More formally,
p € Ijp)(w) if p € w and there is no other event e € domg)(w) with e — ., next|g/(p).

By relaxing this definition, we can get the definition of Weak Initials, WI:

Definition 3.2. (Weak Initials after an execution sequence E.w, W1z (w))
For an execution sequence E.w, let W1 (w) denote the union of Ijz(w) and the set of
processes that perform events p such that p € enabled(s(g).

To clarify these notations, for an execution sequence E.w:
e p € Ijg(w) iff there is a sequence w’ such that F.w ~ E.p.w’, and
e p € Wlig(w) iff there are sequences w’ and v such that E.w.v ~ E.p.w'.

Definition 3.3. (Source Sets)

Let E be an execution sequence, and let W be a set of sequences, such that F.w is an
execution sequence for each w € W. A set T' of processes is a source set for W after F if
for each w € W we have Wiz (w) N P = 0.

A direct consequence of this definition is that every set of processes that can cover the
complete state space after an execution sequence E can be considered a source set of E.

3.3 Source-DPOR

Here we present the source-DPOR algorithm [Abdu14].

Algorithm 1: Source-DPOR

1 Function Explore(E,Sleep)

2 if Jp € (enabled(s|g))\Sleep) then

3 backtrack(E) = p;

4 while 3p € (backtrack(E)\Sleep) do

5 foreach e € dom(E) such that e Sgp nextg(p) do
6

7

8

9

let ' = pre(FE,e);
let u = notdep(e, E).p;
if g (u) Nbacktrack(E") = () then
L add some ¢’ € I[p(u) to backtrack(E");

10 let Sleep’ := {q € Sleep | E E p{q};
11 Explore(E.p, Sleep');
12 | add p to Sleep;

An execution step Explore(E, Sleep) is responsible for the explorations of all Mazurkiewicz

traces that begin with the prefix E. These explorations start by initializing backtrack(E)
with an arbitrary enabled process that is not in the sleep set (Sleep). From this point

28

forward, for each process p that exists in backtrack(E) source-DPOR will perform two
main phases.

During the first phase (race detection), we find all events e that occur in F (i.e., e €
dom(E)) which are racing with the next event of p, and that race can be reversed (e <g,
next(g(p)). For each such event e, we are trying to reverse that race by ensuring that the
next event of p gets performed before e, or using the symbolism of the algorithm, that a
sequence equivalent to E.notdep(e, E).p.proc(e).z (z is any continuation of the execution
sequence) is explored. Such a trace could be explored by taking the next available step
from any process in I;z(notdep(e, E).p) (where E' = pre(E, e)) at E'. Therefore, a process
from Ijp(notdep(e, E).p) is added to the backtrack set at £, provided that it is not already
there.

During the last phase (exploration), we recursively explore E.p. The sleep set at E.p is
initialized appropriately by taking the sleep set at £ and removing all processes whose next
step is dependent with the next step of p. This ensures that at E.p we will not consider
the races of processes that have already been considered, unless they race with the new
scheduled process p. After E.p finished its exploration, p is added to the sleep set at E,
because we want to refrain from executing an equivalent trace.

Practically, on Concuerror the algorithm is structured differently. The main difference is
that the algorithm goes into the race detection phase when an interleaving has reached its
end. At this point all the races that occurred in the interleaving are detected and backtrack
points are inserted in the appropriate prefixes of the complete execution sequence. Then
the exploration continues by exploring the backtrack set of the longest prefix first. This
does not affect the soundness of the algorithm since the only thing that changes is the
order in which new interleavings are explored.

We should note here that Ezplore(E, Sleep) does not need any additional informa-
tion from the various prefixes of I that has not already been established. However,
Ezxplore(E, Sleep) can add backtrack points to the various prefixes of E. This is vital and
must be taken into consideration while trying to parallelize source-DPOR.

3.4 Wakeup Trees

In order to achieve optimality, we must completely avoid having sleep-set blocked inter-
leavings. This is achieved by combining a mechanism called wakeup trees [Abdu14] with
source sets.

Notice that in source-DPOR a sequence of the form E’.notdep(e, E).p.proc(e).z needs to
be explored, but only a single process from the Initials set of notdep(e, E).p is potentially
added to the backtrack set. Therefore, a piece of information on how to reverse the race
gets lost. This may lead to sleep-set blocking, since an alternative sequence could be
explored instead. Intuitively, wakeup trees hold in the form of a tree the fragments that
need to be explored in order to explore the necessary interleavings, while avoid sleep-set
blocking.

In order to define wakeup trees, we first present the generalizations of the concepts
of Initials and Weak Initials so they can contain sequences of processes instead of just
processes:

e v C(g w denotes that exists a sequence v’ such that F.v.v" and E.w are execution
sequences with the relation F.v.v' ~ E.w. What this means is that after F, v is a
possible way to start an execution that is equivalent to w. To connect this to the
concept of Initials we have p € Ijg(w) iff p Cig w.

e v ~(p w denotes that exist sequences v’ and w’ such that F.v.v’ and E.w.w' are
execution sequences with the relation E.v.v' ~ E.w.w'. What this means is that after

29

E, v is a possible way to start an execution that is equivalent to E .w.w'. To connect
this to the concept of Weak Initials we have p € Wiig(w) iff p ~ g w.

Definition 3.4. (Ordered Tree)

An ordered tree is a pair (B, <), where B (the set of nodes) is a finite prefix-closed set of
sequences of processes with the empty sequence () being the root. The children of a node
w, of form w.p for some set of processes p, are ordered by <. In (B, <), such an ordering
between children has been extended to the total order < on B by letting < be the induced
post-order relation between the nodes in B. This means that if the children w.p; and w.ps
are ordered as w.p; < w.ps, then w.p; < w.p2 < w in the induced post-order.

Definition 3.5. (Wakeup Tree)
Let E be an execution sequence and P a set of processes. a wakeup tree after (E, P) is an
ordered tree (B, <), for which the following properties hold:

o Wl (w)N P = (for every leaf w of B.

e For every node in B of the form u.p and w.w such that v.p < v.w and u.w is a leaf
the p ¢ Wlg , (w) property must hold true.

3.4.1 Operations on Wakeup Trees

An important operation used by the optimal-DPOR algorithm is the insertion of new initial
fragments of interleavings, which need to be explored, into the wakeup tree.

Considering a wakeup tree (B, <) after (£, P) and some sequence w with E.w being
an execution sequence such that WIg(w) N P = (), the following properties are used to
define the insertg)(w, (B, <)):

e insert;g(w, (B, <)) is also a wakeup tree after (F, P).
e Any leaf of (B, <) remains a leaf of insertg(w, (B, <)).

e insert g (w, (B, <)) contains a leaf u with u ~g w.

Let v be the smallest (according to the < order) in B with v ~ g w. The operation
insert(g (w, (B, <)) can either be taken as (B, <), provided that v is a leaf, or by adding
v.aw' as a leaf and ordering it after all existing nodes in B of form v.w”, where v’ is the
shortest sequence with w g v.w'.

Let us also describe the subtree((B, <),p) operation. For a wakeup tree (B, <) and a
process p € B, subtree({B, <)), p) is used to denote the subtree of (B, <) rooted at p. More
formally, subtree((B,<)),p) = (B’,<’) where B’ = {w | p.w € B} and <’ is the extension
of < to B'.

3.5 Optimal-DPOR

Here the optimal-DPOR algorithm is presented as described in its original paper [Abdu14].

Similarly, with the other algorithms, optimal-DPOR has two different phases: race
detection and state exploration. However, the algorithm is structured differently. In the
same way that source-DPOR is structured at Concuerror, optimal-DPOR only detects the
races when a maximal execution sequence has been reached (i.e., there exist no enabled
processes). This is necessary because the condition for inserting new wakeup trees is only
valid when the fragment that is going to be inserted contains all the events in the complete
executions that do not happen after e and those that occur after e.

30

Algorithm 2: Optimal-DPOR
Function Explore(E,Sleep, WuT')

1

2 if enabled(s(p)) = () then

3 foreach e, ¢’ € dom(FE) such that (e Sp €') do
4 let £ = pre(E,e);

5 let v = notdep(e, E).proc(e’);

6 if sleep(E') N WIigy(v) = 0 then

7 L insert(gn (v, wut(E'));

8 else

if WuT # ({()},0) then

10 ‘ wut(E) := WuT;

11 else

12 choose p € enabled(sg));

13 wut(E) := ({p},0);

14 sleep(E) := Sleep;

15 while Jp € wut(E) do

16 let p=min{p € wut(E)};

17 let Sleep’ := {q € sleep(E) | E | p{ql;
18 let WuT" = subtree(wut(E),p);

19 Explore(E.p, Sleep’, WuT");
20 add p to sleep(E);

21 remove all sequences of form p.w from wut(E);

The race detection phase works mostly similarly with source-DPOR. The main differ-
ences have to do with the fact that we require the knowledge of the sleep set for every
prefix £ and that the concepts of Weak Initials is used instead of the Initials to determine
whether a fragment is going to be inserted at the wakeup tree, which is rooted at the prefix
E'.

In the exploration phase of a non-maximal execution sequence, the wakeup tree of that
sequence is initialized to the given WuT'. If WuT is empty, then an arbitrary enabled pro-
cess is chosen, in the same way that it would for the non-optimal algorithms. Afterwards,
for every process that exists in WuT the explore function is going to be called recursively,
with the appropriate subtree of wut(E). This guarantees that the complete fragment gets
explored. After the recursive call finishes, the sequences that were explored are removed
from the wakeup tree. Sleep sets are handled in a similar way with previous algorithms.

As the name suggests, optimal-DPOR is optimal in the sense that it never explores two
maximal execution sequences that belong to the same Mazurkiewicz trace, since it can be
proven that no interleaving is sleep-set blocked [Abdu14].

31

Chapter 4

Parallelizing source-DPOR Algorithm

Concuerror utilizes primarily DPOR algorithms to systematically test concurrent Erlang
programs. Therefore, parallelizing Concuerror entails designing parallel versions for its
DPOR algorithms. Since Concuerror is written in Erlang, which is a functional language
that is based on message passing to share data between processes, we are going to follow
a message passing approach, while developing our algorithms.

In this chapter, we are going to present the parallel version of the source-DPOR algo-
rithm. Let us first discuss some existing work in parallelizing persistent-set based DPOR
algorithms.

4.1 Existing Work

When parallelizing DPOR algorithms, ideally we would like to develop parallel algorithms
that explore exactly the same number of interleavings as their sequential versions. In
other words, we want to retain the soundness of our algorithms, while simultaneously not
exploring more interleavings than necessary

At a first glance, parallelizing DPOR algorithms may seem straightforward. Since the
state space of a program contains no cycles, we should simply distribute that state space
into multiple workers-schedulers. For example, in the case of Algorithm 1, we would
assign a prefix of the form E.p to a scheduler. That scheduler would be responsible for
the execution of explore(E.p, Sleep). However this approach leads to two main issues
[YangO7].

Firstly, DPOR algorithms detect races and update the exploration frontier in a non-local
manner. While calls to explore(E.p, Sleep) may guarantee that for all maximal execution
sequences of form E.w, the algorithm has explored some execution sequence E’ which is
in [E.w]~, backtrack points may also be inserted in the prefixes of E.p. For instance, lets
assume that we assign to one scheduler the exploration of E.p and to another scheduler
the exploration of E.q. Since we are using message passing as our programming model,
our schedulers would use different copies of the prefix £/. Both of those explorations may
lead to adding the same process r to the backtrack at £. This would mean that both
those schedulers would end up calling explore(E.r, Sleep). Therefore, different schedulers
may end up fully exploring identical interleavings. In order to combat those redundant
explorations, Yang et al. [Yang07] suggest a heuristic that simply modifies the lazy addition
of backtrack entries to the exploration frontier [Flan05] to become more eager. Adding
backtrack entries more eagerly, i.e., earlier in the exploration phase, reduces the chances of
two different workers exploring identical interleavings. In the above scenario, this strategy
could have led to r being added to the backtrack at E before assigning the exploration
of E.p and FE.q to different schedulers. Therefore, both of our schedulers would have
know that r exists in the backtrack of £ and none of them would have added it, avoiding
the duplicate exploration of E.r. However, this is simply a heuristic, which means that
depending on the tested program, a significant amount of redundant computations may still

33

occur. Particularly, this heuristic fails to prevent redundant explorations, when branches
in the code lead to different races.

Secondly, the size of different chunks of the state space cannot be known a priori. This
means that some form of load balancing is essential to achieve linear speedup. Yang et
al. [Yang07] suggest using a centralized load balancer to unload work from a scheduler.
Specifically, a scheduler calls the load balancer when the total number of backtrack entries
in the execution sequence of the scheduler exceed a threshold. However, for different
programs and different number of workers, different threshold values should be used
[Sims12]. Still, Yang et al. provide no insight into the problem of selecting an appropriate
threshold.

Simsa et al. [Sims12] provide a more appropriate way to solve these issues. By using
a centralized Controller, which keeps track of the current execution tree (a tree whose
branches correspond to the current execution sequences E of the schedulers), they assure
that no redundant explorations occur. They also suggests the use of time slicing to achieve
load balancing.

4.2 Parallel source-DPOR

Here we are going to present how to efficiently parallelize the source-DPOR algorithm, by
modifying the parallel algorithm presented by Simsa et al. [Sims12].

4.2.1 Basic Idea

Normally, DPOR algorithms perform a depth-first search of the state space to check for
erroneous interleavings. Instead, we are going to use multiple depth-first searches (by
partitioning the frontier of our search) to explore our state space.

We are going to use a centralized C'ontroller who will be responsible for distributing the
exploration frontier to different worker-schedulers. The Controller is also going to oversee
the parallel exploration, so we avoid exploring more interleavings than the sequential
version. In order to do this, the controller will keep track of the frontier that is being
explored in the form of an execution tree. In short, the execution tree represents the
state space of our program. Nodes of the execution tree represent non-deterministic choice
points and edges represent program state transitions. A path from the root of the tree to
a leaf then uniquely encodes a program an execution sequence. We are also going to use
the term branch to refer to execution sequences within the execution tree.

In order to avoid redundant explorations, we are going to use the concept of ownership
[Sims12] of a node of a state space. A scheduler exclusively owns a node of the state space
if it is either contained as a backtrack entry within the part of the frontier that was assigned
to that specific scheduler, or if it is a descendant of a node that the scheduler owns. All
other nodes, are considered to have a disputed ownership.

The scheduler, when conducting its depth-first search, is going to be allowed to explore
only nodes that it owns. When encountering disputed nodes, the scheduler will report back
to the Controller, which will keep track of the complete active frontier. If that disputed node
does not exist within the complete frontier, then no other scheduler has explored that node
and therefore, the scheduler can claim ownership over the disputed node and continue
with exploring it. Otherwise, the ownership of the disputed node has been claimed by
some other scheduler and therefore, that node can be discarded from the frontier of our
scheduler.

For example, if a scheduler is responsible for exploring an execution sequence E that
has a single backtrack entry of p at E, then that scheduler owns every node that is a
descendant of E.p i.e., it owns every execution sequence that begins with the prefix E.p

34

(or else, the complete subtree that is rooted at E.p). Now lets assume that during the
exploration of the subtree that is rooted at E.p, has been added at the backtrack at E.
Since this node is disputed, the scheduler will not explore this backtrack entry. Instead,
it will report back to the Controller, in order to determine whether some other entry has
already claimed ownership over E.r.

4.2.2 Algorithm

Algorithm 3: Controller Loop

1
2
3
4
5
6
7

© o

10

11

Function controller_loop(N, Budget, Schedulers)

Ey < an arbitrary initial execution sequence;
Frontier « [Ey];
T <« an execution tree rooted at Ej;
while Frontier # () do
Frontier < partition(Frontier, N);
while exists an idle scheduler S and an unassigned execution sequence E in
Frontier do
E. < a copy of Ej
mark F as assigned in Frontier;
spawn(S, explore_loop(E., Budget));

Frontier, T <+ wait_scheduler_response(Frontier,T);

The logic of the Controller is shown in Algorithm 3. The Controller maintains a
Frontier, which is a set of execution sequences E, and an execution tree 7', which contains
as branches the execution sequences of the Frontier. For as long as there exists an exe-
cution sequence at the Frontier (Frontier # (), the Controller will partition its Frontier
to at most IV execution sequences. Then, the Controller will try to assign all of its unas-
signed execution sequences to any idle scheduler, by spawning explore_loop(E., Budget)
functions. Finally, it will block until it receives a response from a scheduler.

Algorithm 4: Frontier Partitioning

1
2
3
4
5
6
7
8
9

10

11

Function partition(Frontier, N)

for all E € Frontier do

while total_backtrack_entries(E) > 1 and size(Frontier) < N do
E’ + the smallest prefix of E that has a backtrack entry ;

p < a process € backtrack(E");

E! + a copy of F';

remove p from backtrack(E');

add p to sleep(E');

add backtrack(E') to sleep(EL);

add E/ to Frontier;

return Frontier;

During the partitioning phase (Algorithm 4), we inspect the current Frontier to deter-
mine whether we should create additional execution sequences. Every execution sequence
that contains more than one backtrack entry is split into multiple sequences until either
the Frontier contains /N sequences or all sequences have exactly one backtrack entry. It

35

is vital to modify sleep sets appropriately because, if we were to simply remove backtrack
entries, our algorithm would have an increased amount of sleep-set blocked interleavings.
In addition, we would also end up potentially re-adding the same backtrack entries, which
would lead to exploring duplicate interleavings.

Algorithm 5: Scheduler Exploration Loop

1 Function explore_loop(Ey, Budget)
2 StartTime < get_time();
3 E + Ey;

4 repeat

5 E' « explore(E);
6 E' «+ plan_more_interleavings(E');

7 E + get_next_execution_sequence(E");

8 CurrentTime < get_time();

9 until CurrentTime — StartTime > Budget or size(F) < size(Ey);
10 send FE to Controller ;

Algorithm 5 details how the schedulers explore their assigned state space. A call
to explore_loop(Ey, Budget) guarantees that for all maximal execution sequences of form
Ey.w, the algorithm has explored some execution sequence Ef, which is in [Ey.w]~ We
use explore(E) and plan_more_interleavings(E') as a high level way to describe the
main phases (state exploration and race detection) of the sequential source-DPOR. The
plan_more_interleavings(E’) function could add backtrack points in prefixes of Ey. This
could lead to different schedulers exploring identical interleavings. We avoid this by hav-
ing the function get_next_execution_sequence(E’) return the largest prefix of E’ that has
a non-empty backtrack set. This leads to a depth-first exploration of the assigned state
space before considering interleavings outside of the state space. The exploration continues
until we encounter a prefix of Ey (size(E") < size(Ep)). This is necessary to assert that
the specific scheduler will not explore interleavings outside of its state space. When the
exploration terminates, the backtrack points added to the prefixes of Ej will be reported
back to the Controller.

Algorithm 6: Handling Scheduler Response

t Function wait_scheduler_response(Frontier, T)
2 receive F from a scheduler;

3 remove E from Frontier;

4 E'|T « update_execution_tree(E,T);

5 if E' has at least one backtrack entry then
6 L add E’ to Frontier;

7 return Frontier, T

When the Controller receives a response (an execution sequence E) from a scheduler
(Algorithm 6), it will try and report any new backtrack entries in E to the execution tree
T. This is done through the update_execution_tree(E,T) function. This function iterates
over the execution sequence and the execution tree simultaneously and those backtrack
entries of E that are not found in the execution tree, are added to it and they are not
removed from the execution sequence. This means that this execution sequence is the first
to claim ownership over those entries and the state space that exists under them. Any
backtrack entries that already exist in 7" are removed from the execution sequence E (and

36

q:
p: r:
write(x) ;iigé)(())() write(x)

Figure 4.1: Simple readers-writes example

added to the sleep sets at the appropriate prefixes of E), because some other execution
sequence has already claimed their ownership. This updated execution sequence is then
added to the Frontier of the Controller. Through this we make sure that two schedulers
cannot explore identical interleavings.

When updating the execution tree, we also use the initial execution sequence that was
assigned to a scheduler (the one denoted as Ey at Algorithm 5) to figure out which parts of
the execution tree have already been explored. Those parts are deleted from the execution
tree. This is mandatory in order to keep the size of the execution tree proportionate to the
size of our current F'rontier.

4.2.3 Load Balancing

In order to achieve decent speedups and scalability it is necessary to have load-balancing
[Sims12]. This done through time-slicing the exploration of execution sequences. This is
the reason behind the use of Budget in Algorithm 5. By having schedulers return after
a certain time-slice, we can make sure that even if their assigned state space was larger
compared to that of other schedulers, they will eventually exit and have their execution
sequence and subsequently, their state space, partitioned. How effective is this method is
determined by two variables, the upper limit /N to the number of execution sequences in
our Frontier and the Budget of a scheduler.

Higher upper limit N means that a larger work pool is available to the workers and
they do not always have to wait for the update_execution_tree(E,T') function to terminate.
Therefore, the utilization of the schedulers increases. However, a larger N means increased
memory requirements, since more execution sequences are active at each time. More
importantly, it also means that the state space splits into smaller fragments. This increases
how frequently a scheduler discovers disputed nodes, which leads to an increase in the
communication between the schedulers and the controller. Setting this limit to double the
amount of schedulers, produces decent results for most test cases[Sims12].

Smaller Budget values lead to more balanced workload, since the work is distributed
more frequently. However, extremely low values may lead to an increased communication
overhead between the Controller and the schedulers. This can also cause the Controller
to become a significant bottleneck. The best way to deal with this, is to pick an initial
value Budget of around 10 seconds. When a scheduler starts a new exploration, the value
of its budget will be dynamically assigned by the Controller depending on the amount of
idle schedulers. For instance, the first execution should have a budget of % were n
is the total amount of schedulers, which are all idle. When half the schedulers are idle,
this value should be %, etc. This makes it possible to have reduced communication
(higher budget) during periods with many busy schedulers and a better balancing (lower
budget) during periods with many idle schedulers.

4.2.4 A Simple Example

Let us consider the example in Figure 4.1. In this case we have 3 processes that write and
read a shared variable x. Figure 4.2 represents the traces explored during the sequential

37

source-DPOR. We use a bold rectangle to represent a new event and a faint rectangle to
denote a replayed event. The red edges represent the races that are detected and planned.
The source set at a state is represented inside the brackets.

p: write(X), {q}

p: write(X) {q, r}P q: read(x) {r} g: read(X), {r} r: write(X)
! !

| q: read(X), {r} r: write(X’ | q: write(X) q: write(X) | p: write(X), {q} q: read(X) |
v

| q: write(X) | | q: read(X) | | r: write(X), {p} p: write(X) | | q: read(X) | q: write(X) |
!

| r: write(X) | g: write(X) | | p: write(X) | r: write(X) | | q: write(X) | | p: write(X) |

| Trace 1 ‘ | Trace 2 ‘ ‘ Trace 3 | ‘ Trace 4 | | Trace 5 ‘ | Trace 6 ‘

Figure 4.2: Interleavings explored by the sequential source-DPOR.

p: write(X), {q} p: write(X) p: write(X), {q} p: write(X) q: read(X)
) ¢
q: read(X), {r} q: read(X), {r} q: read(X) r: write(X)
v
q: write(X)
v
r: write(X)
Initial Trace Trace assigned to Trace assigned to TiitE]] Eraeiian
Explored Scheduler 1 Scheduler 2 Tize

Figure 4.3: Initial interleaving explored by the parallel algorithm.

Figure 4.3 depicts the initial step of the parallel source-DPOR. This initial execution
sequence, along with detected races is partitioned into fragments which get assigned to
different schedulers. This image also contains the initial execution tree which represents
the state space that exists in our exploration frontier at this point.

38

p: write(X) p: write(X), {r}

| -

g: read(X), {r} ———=| r: write(X)
v
q: read(X)
v
q: write(X)
Trace assigned to Scheduler 1
Scheduler 1 Trace 1
p: write(X), {q} ———> q:read(X) q: read(X), {r}
) |
q: write(X) q: write(X)
{ |
r: write(X), {p} p: write(X)
v > v
p: write(X) r: write(X)
Trace assigned to Scheduler 2 Scheduler2 Trace
Scheduler 2 Trace 1 2

Figure 4.4: Exploration of the assigned traces by each scheduler.

In Figure 4.4 we illustrate how each scheduler explores its assigned execution sequence.
The first scheduler explores its first trace: p.r.q.q (equivalent to the second trace at Figure
4.2). After the race detection takes place, there are no backtrack entries added below its
assigned trace. The only execution sequence planned is the sequence r. However, this
sequence is not explored since it does not belong to the state space of the scheduler. The
Controller assigned to the second scheduler the execution sequence q. After exploring its
first trace, two more races are detected. It is important to notice here that the first trace of
the second scheduler is equivalent to the third trace of the sequential algorithm. However,
the sequential algorithm detects only one race. This happens because on the sequential
algorithm the race between ¢ : read(x) and r : write(x) had already been detected at the
second interleaving and so its planning gets skipped. On the contrary, on the parallel
algorithm this interleaving is explored by another scheduler and therefore, there is no
knowledge of this race been already detected. This leads to both our schedulers having
detected the same race. Nevertheless, in both schedulers this new backtrack entry is outside
of their state space.

This means that they will have to report their results back to the Controller. The
schedulers that reports first its results, will be the one to update the execution tree by
inserting the new entry found. This scheduler will add its execution sequence to the
frontier, which will be again partitioned (no need for a partition here since the unexplored
frontier will only have one race). Then this execution sequence will be assigned to an idle
scheduler. The scheduler that reports second to the Controller, will not be able to insert its
backtrack entry into the execution tree, because that entry will already be there, and the
backtrack entry gets removed from its execution sequence. This execution sequence will

39

be left with no more backtrack entries and as such it will not be inserted into the frontier.
This guarantees that we do not explore identical interleavings more than once.

Lets assume that Scheduler 1 was the one that managed to report first to the Controller.
Then the execution tree will be the one depicted in Figure 4.5. Notice here that the states
explored by the Scheduler 1 were deleted from the execution tree. This keeps the size of
the execution tree proportional to the size of the current exploration frontier. At this point
Scheduler 1 will add its execution sequence to the frontier. Then the Controller will assign
this sequence to Scheduler 1 (since Scheduler 2 has not yet returned), and Scheduler 1 will
explore the last 2 traces (trace 5 and 6 from the sequential example). After both Scheduler
1 and 2 have returned the execution will have finished since there will no more traces left
to explore.

p: write(X) g: read(X) r: write(X)

Execution Tree

Figure 4.5: Execution Tree if Scheduler 1 returned first.

40

Chapter 5

Parallelizing optimal-DPOR Algorithm

In this chapter, we are going to present a first attempt in parallelizing the optimal-DPOR
algorithm, provide an analysis on why this attempt fails to achieve any speedup and then
present an improved parallel optimal-DPOR algorithm.

5.1 Parallel optimal-DPOR - A First Attempt

5.1.1 Basic Idea

Parallelizing the optimal-DPOR algorithm is significantly more complicated than source-
DPOR. We do know that whenever a call to Explore(E, Sleep, WuT") returns during Al-
gorithm 2, then for all maximal execution sequences of form FE.w, the algorithm has
explored some execution sequence E’ which is in [E.w]~ [Abdul4]. In other words, calls
to Explore(E,Sleep, WuT') guarantee that the complete subtree rooted at E will be ex-
plored. However, the complete WuT at some execution sequence E cannot be known
until we have completed exploring all execution sequences which are ordered before F,
according to the total order of our state space (Definition 3.4). This happens because the
insert;g (v, wut(E£')) function can add entries to any wakeup tree of an execution sequence
that is ordered after the current execution sequence.

Therefore, when assigning an incomplete wakeup tree to a scheduler, there is no guar-
antee that the scheduler will explore the complete assigned state space. This means that
if a scheduler inserts a fragment into a wakeup tree owned by a different scheduler, we
cannot know if that fragment (or a different but equivalent fragment) was indeed explored.
As a result, the concept of the ownership of a backtrack entry, as defined in Chapter 4,
cannot remain the same for the optimal-DPOR algorithm.

Another main issue with optimal-DPOR, is the fact that the insert (g (v, wut(E)) function
may end up and inserting at wut(FE) and execution sequence that is different than v (but it
will lead exploring an equivalent subtree). This means that two execution sequences, while
different, may be equivalent. This can potentially lead to different schedulers inserting
in their wakeup trees execution sequences that while different, may produce equivalent
interleavings and therefore, the optimality of the algorithm could be lost.

However, we do know that any leaf of (B, <) remains a leaf of insert g (w, (B, <))
[Abdul4]. This means that, during the sequential algorithm, any fragment that is inserted
into a wakeup tree is a fragment that must be explored, unless it is removed during the
exploration phase of the algorithm. Therefore, when we insert a fragment into a wakeup
tree, we can explore it out of order, as long as we are careful to remove execution sequences
that would have been removed on the sequential algorithm. We can take advantage of
this to create an algorithm that can explore many interleavings in parallel but race detects
each explored interleaving sequentially.

41

5.1.2 Algorithm

Due to the fact that we need to have parallel exploration of interleavings but sequential
planning, we need to decouple the normal exploration loop of a scheduler into two differ-
ent parts: state exploration and race detection — planning. Our workers (the schedulers)
will be responsible for the first part. For the second part, we are going to use a central-
ized Planner. However, in order to be able to better distribute the available work to the
schedulers when the Planner is busy, we are also going to use a Controller.

Algorithm 7: Controller for optimal-DPOR - First Attempt

1 Function controller_loop(Schedulers)

2 Ey < an arbitrary initial execution sequence;

3 Frontier < [Epl;

4 T + an execution tree rooted at Fj;

5 PlannerQueue < empty;

6 while size(Frontier) > 0 and size(PlannerQueue) > 0 do
7
8

Frontier < partition(Frontier);
while exists an idle scheduler S and an unassigned execution sequence E in
Frontier do
9 E. < a copy of E;
10 spawn(S, explore(E,));
11 while the Planner is idle and PlannerQueue # empty do
12 E + PlannerQueue.pop();
13 update_trace(E,T);
14 spawn(Planner, plan(E));
15 wait_response(Frontier, T, PlannerQueue);

Algorithm 7 describes the functionality of the Controller. Similarly to the source-DPOR
parallel version, the Controller is responsible for maintaining the current Frontier (as well
as partitioning it) and the current Execution Tree and for assigning execution sequences
to schedulers, for as long we have idle schedulers and available work.

Apart from that, the Controller also maintains a queue of fully explored execution
sequences that need to be race detected. When the Planner is idle and the queue is
not empty, the execution sequence is updated (through update_trace(E,T)) and then is
sent to the Planner so its races can be detected. When updating the execution sequence
from the execution tree, the subtrees of the execution tree which are ordered after the
execution sequence (according to the ordering of our state space Definition 3.4) are inserted
into the execution tree as not_owned wakeup trees. This guarantees that no redundant
fragments are going to be inserted for future explorations and therefore, the algorithm
remains optimal.

The plan(E) function race detects the fully explored execution sequence E according to
the logic of optimal-DPOR (Algorithm 2). When the planning of the sequence is finished
the results are reported back to the Controller. The explore(E) function explores the
execution sequence E until a maximal execution sequence has been reached and reports
back that execution sequence to the Controller.

Partitioning the exploration frontier (Algorithm 8) has two main differences, compared
to the parallel source-DPOR. Firstly, the frontier gets partitioned completely, so we can
maximize the parallelization of the exploration phase. Secondly, the entries that are dis-
tributed from one execution sequence, are not simply removed from the backtrack and
added to the sleep set. It is vital here to maintain the correct ordering between the in-

42

Algorithm 8: Optimal Frontier Partitioning

1 Function partition(Frontier)

2 for all E € Frontier do

3 while wakeup_tree_leaves(E) > 1 do

4 E’ + a prefix of E with wut(E’) #0 ;

5 v+ a leaf € wut(E');

6 E! < a copy of E;

7 mark v as not_owned at wut(E");

8 {Prefiz,v,Suf fix} < split_wut_at(v, wut(E"));

9 mark Prefiz and Suf fiz as not_owned at wut(E.);
10 add FE. to Frontier;

1 return Frontier;

terleavings (Definition 3.4), because during the exploration phase of the optimal-DPOR
algorithm, sequences can be removed from the wakeup tree. Maintaining the ordering
will keep this behavior intact in the parallel version. Therefore, the given entry is marked
as not_owned at the distributed sequence. The function split_wut_at(v,wut(E.)) splits the
copy of the wakeup tree to three parts: the Prefixz (the wakeup tree entries ordered before
the sequence v), the leaf v and the Suf fiz (the wakeup entries ordered after v). The first
processes processes of the entries of the Prefix are added to the sleep set at the new
execution sequence E. (e.g. if p.q.r is a leaf in Prefiz, then p is added to sleep(E.)). The
Suf fix entries are marked as not_owned at E..

Algorithm 9: Handling Scheduler and Planner Response

t Function wait_response(Frontier, T, PlannerQueue)
2 receive a message M;

3 if M is sent from a Scheduler then

4 E <+ M,;

5 PlannerQueue.push(E);

6

7

8

9

()

Ise if M is sent from the Planner then
E + M,
update_execution_tree(E,T);

add FE to Frontier;

After assigning the available work to the available schedulers and the Planner, the
Controller will wait for a response either from a scheduler or the Planner (Algorithm
9). When a response is received from a scheduler, the fully explored received execution
sequence will be added to the queue of the Planner and the Controller will continue with its
loop (Algorithm 7). If a response is received from the Planner, the Controller will update
the execution tree 7' by adding the new wakeup trees that were inserted by the Planner
and by deleting the suffix of the execution sequence that was just explored and has no
wakeup trees. We delete this part in order to have the execution tree only contain the part
of the state space that is either currently getting explored or is planned to be explored. If
we were to not delete those suffixes, the size of the execution tree would eventually be the
size of our complete state space.

43

. q: r:
P R1 = x[0] R3 = x[0]
=N R2 = x[0] R4 = x[1]
1 i 1= i .
while X[l] : @ and 1 > 0: assert(Rl == RZ) assert(RS == R4)

i=1i-1

x[1] = R2 + 1 x[2] = R4 + 1

Figure 5.1: Lastzero 2 example

5.1.3 Example

In Figure 5.1 we can see the pseudocode of lastzero 2, were we have an array of 3 elements
(initially all elements have a zero value) and three processes. The first process (p) searches
the array for the zero element with the highest index. The other two processes increase
their assigned element by a value of 1.

p: read(x[2])

q: read(x[0])

p: read(x[2])

>

q: read(x[0])

,,,,,,,,, > 1 read(x[0])

r: read(x[1])

q: write(1, x[1])

¥ i v
q: read(x[0]) q: read(x[0]) q: read(x[0]) q: read(x[0])
¥ I ¥
q: read(x[0]) g: write(1, x[1]) q: read(x[0]) q: write(1, x[1])
¥ ! v
|q: write(1, X[1]) f------ ”>| r: read(x[0]) | | r: read(x[0]) | | r: read(x[0]) | | r: read(x[0]) |
v ¥ ¥ ¥ ¥
| r: read(x[0]) | | r: read(x[1]) | | r: read(x[1]) | | r: read(x[1]) | | r: read(x[1]) I
¥] ¥

q: read(x[0])

| r: write(2, x[2]) |

| r: write(1, x[2]) r

I(“I(“I(“I

r: write(2, x[2]) | r: write(1, x[2])

q: read(x[0])

q: write(1, x[1])

q: read(x[0])

I l
q: read(x[0]) q: read(x[0]) q: read(x[0])
! |
q: write(1, x[1]) }--------- > 1 read(x[0]) r: read(x[0]) r: read(x[0])
o} ronen] [| ;
| r: read(x[0]) | | r rea;(x[l]) | | r: read(x[1]) | r: read(x[1])
v H v !
| r: read(x[1]) | |q: write(1, x[l])l |q: write(1, x[1]) fo-------- > 12 write(1, x[2]) | | r: write(1, x[2]) |
v ‘ v v
| r: write(2, x[2]) | | r: write(1, x[2]) | | r: write(1, x[2]) | | p: read(x[2]) | | p: read(x[2]) |
v : v

p: read(x[2])

p: read(x[1])

Figure 5.2: Interleavings explored by the sequential optimal-DPOR

44

| p: read(x[2]) |

| p: reati(x[l]) |

p: read(x[1])

p: read(x[1])

q: write(1, x[1])

Trace 5

Figure 5.2 represents the traces explored during the sequential optimal-DPOR. We use
a black bold rectangle to represent a new event and a faint rectangle to denote a replayed
event. The continuous red edges represent the races that are detected and planned. The
red nodes represent the wakeup tree entries at each trace.

p: read(x[2])

]

q: read(x[0]) p: read(x[2])

‘ !

q: read(x[0]) q: read(x[0]) q: read(x[0])
1 V

q: read(x[0]) q: write(1, x[1]) q: read(x[0])
¥ !

| q: write(1, x[1]) f-—-

1

| r: read(x[0]) |

r: read(x[1])
r: write(2, x[2])
— Trace assigned to

Initial Trace Scheduler 1

->| r: read(x[0]) |

r: read(x[0])

q: write(1, x[1]) --------- > r: read(x[0])
r: read(x[1])

v ¥
| r: read(x[1]) | r: read(x[1])

r: write(2, x[2])

p: read(x[2]) - >| q: read(x[0]) | | p: read(x[2]) I q: read(x[0])
¥ v
| q: read(x[0]) | | q: read(x[0]) | q: read(x[0])
¥ !
| q: write(1, x[1]) | | q: read(x[0]) | q: write(1, x[1])
¥ !
| r: read(x[0]) | | q: write(1, x[1]) |—>| r: read(x[0]) | r: read(x[0])

r: read(x[1]) r: read(x[1]) r: read(x[1])
r: write(2, x[2]) r: write(2, x[2])

Trace assigned to| Initial Execution
Scheduler 2 Tree

Figure 5.3: Initial interleaving explored by the parallel optimal-DPOR

Figure 5.3 depicts the initial step of the parallel optimal-DPOR. An arbitrary execution
sequence is explored initially and then its races are detected and planned in the form of
wakeup trees. The wakeup trees are distributed into different fragments and all unassigned
fragments are assigned into the idle schedulers. Also the execution tree is initialized with
the current exploration frontier.

In this example, lets assume that Scheduler 2 finishes first the exploration of its assigned
trace. The controller will then receive the new explored trace and will add this trace to the
queue of the Planner. Since the Planner is idle, this trace will be sent to the Planner to be
race detected. While race detecting this trace, no more interleavings will be planned. This
trace is equivalent to the 3rd trace of the sequential execution (Figue 5.2). Notice here
that in the sequential algorithm this trace had an additional wakeup tree. This wakeup
tree was planned by the 2nd trace of the sequential algorithm, which has yet to be race
detected in our example. Therefore, traces 4 and 5 of the sequential algorithm cannot be
planned from the 3rd trace but only from the 2nd. This makes apparent the main issue

45

Benchmark | Planning | Exploration | Sequential Time for Time for
Time (%) | Time(%) Time 4 Schedulers | 24 Schedulers
readers 15 71.7% 28.3% 52m43.585s | 98m28.251s | 97m13.762s
lastzero 15 80.5% 19.5% 13m32.843s | 24m98,312s 24m21,219s
readers 10 59.1% 40.9% 43.267s 59.699s 54.592s

Table 5.1: Parallel optimal-DPOR performance.

of the parallelization of the optimal-DPOR: the complete wakeup tree at some execution
sequence E cannot be known until we have completed exploring all execution sequences
which are ordered before F, according to the total order of our state space (Definition 3.4)

5.1.4 Performance Evaluation

We are going to use the following two synthetic benchmarks to evaluate our first attempt
in parallelizing the optimal-DPOR algorithm:

e readers N: This benchmark uses a writer process that writes a variable and N reader
processes that read that variable.

e lastzero N: In this test we have N + 1 processes that read and write on an array
of N + 1 size, which has all its values initialized with zero. The first process reads
the array in order to find the zero element with the highest index. The other N
processes read an array element and update the next one.

Our parallel optimal-DPOR fails to achieve any type of speedup, as depicted in Figure
5.4. Table 5.1 holds information about how our implementation runs on various test
cases. The exploration and planning time rows show what percentage of the time of the
sequential algorithm is spend on exploring and planning interleavings respectively. Those
measurements will help us explain the reason for this lack of speedup.

50
a0t

30+

Time (sec)

20

10+

0 5 10 15 20 25
Schedulers

Figure 5.4: Execution time for readers 10 by optimal-DPOR.

46

5.1.5 Performance Analysis

This lack of performance is justified by the following reasons.

Firstly, lets look at the exploration and planning percentages of the sequential algorithm,
presented at Table ??. While the percentage of exploration time in the case of a small test
case like readers10 is around 40%, we have observed that for larger test cases this figure
varies between 10%-30%. This means that even on an ideal setup, with zero overhead
and infinite schedulers, our speedup could never exceed a factor of 1.429 (on a test case
with 70% planning time, if we consider that the exploration phase happens instantly the
speedup would be 1.429 = %, since the planning phase would still have to take place
sequentially). This reason, by itself, makes it impossible for our algorithm to achieve good

performance and scalability.

What is more, the rate with which new interleavings are planned for exploration leads
to schedulers not being sufficiently utilized throughout the execution of the algorithm.
Specifically, we have noticed that the execution of the DPOR algorithm can be split into three
consecutive phases. In the first phase, race detecting a single interleaving generates a large
amount of interleavings that need to be explored and therefore the exploration Frontier
is relatively large. This means that the schedulers have enough work and are being kept
utilized. During the second phase, race detecting an interleaving generates a relatively
small amount of new interleavings that need to be explored. Generally, throughout this
phase, not enough work is being generated and the schedulers tend to stay idle. In the
third phase, barely any new interleavings are planned, until the complete state space has
been explored, at which point the algorithm terminates.

Frontier — Planner Queue
90 T T T T T T

lastzero 7
un
o

B
o

T T T T T T T T

1 1 1 1 1 1 1 1

o
o

0 100 200 300 400 500 600 7

lastzero 8

4]

o
T e e N
TN TR TR S N

0 200 400 600 800 1000 1200 1400 1600

lastzero 9
J
[a=]
o
T
1

0 500 1000 1500 2000 2500 3000 3500
Measurements taken during the execution of the program

Figure 5.5: Planner Queue and Frontier sizes for the execution of lastzero.

47

This pattern becomes visible from Figure 5.5. We have run our algorithm with four
schedulers for the lastzero 7, 8 and 9 benchmarks. To create this graph we have taken
measurements regarding the size of queue of the Planner and the exploration Frontier of
the schedulers. The measurements are taken after either the exploration or the planning of
an interleaving has finished. In this graph, the three aforementioned phases can be clearly
observed. After the first phase ends, we notice that the relative large exploration Frontier
that has been created, gets “consumed” in an extremely fast rate, due to the fact that we
have four scheduler consuming from it, while only one Planner producing in it. Also,
like we mentioned before, the exploration of a single trace is significantly faster than its
race detection. Consequently, during the second phase there are very few traces within the
exploration Frontier and therefore, the schedulers stay underutilized. We can also notice
from the graph that this effect intensifies while our state space increases. The main reason
behind this is the fact that as the state space of a program increases, the planning of an
interleaving becomes even more slow, compared to the exploration of an interleaving.

To make matters worse, our algorithm also has a significant overhead. As mentioned
before, communication between the controller and the workers can be a substantial bot-
tleneck. The parallel source-DPOR deals with it by assigning a state space to the workers,
minimizing the need for communication. However, in this attempt the use of the central-
ized planner leads to the schedulers having to report a trace back to the controller every
single time an exploration reaches its end.

5.2 Scalable Parallel optimal-DPOR

5.2.1 Basic Idea

Like we mentioned in the previous section, trying to develop a parallel optimal-DPOR
algorithm based on the parallel source-DPOR has two main issues.

Firstly, in the source-DPOR algorithm, the backtrack is a set of processes (Definition
3.3), which means it contains single steps that the algorithm is going to “take” in the
future. In the parallel algorithm, as we mentioned in Chapter 4, when a backtrack entry
p at an execution sequence F is assigned to a scheduler, that scheduler will own every
trace that starts with E.p i.e., the scheduler can explore the subtree that is rooted at E,
without reporting back to the controller (unless its Budget is not exceeded). However, in
optimal-DPOR, backtrack entries are trees that contain, as nodes, sequences of steps that
will be explored. A scheduler could not own the tree due to the fact that in Algorithm
2, new fragments keep getting inserted into the wakeup trees and therefore, the trees are
not complete until they are about to be explored. A wakeup tree is complete, when all the
smaller nodes w.r.t the ordering of the tree (p = min<{p € wut(E)}) have been explored.
At each point throughout the execution of the algorithm, there exists only one wakeup tree
with that property. Nonetheless, any leaf of (B, <) remains a leaf of insertg)(w, (B, <))
[Abdul4]. This means that, a scheduler can own a subtree rooted at a leaf sequence of
the wakeup tree. We are going to modify the concept of ownership as follows:

o A leaf sequence can be marked as owned in the wakeup tree of a scheduler. This
means that this scheduler also own every node in the subtree rooted at that leaf.
For example, if v is an owned leaf sequence in wut(E) of some scheduler, then that
scheduler owns every execution sequence that has a prefix of E.v.

o A leaf sequence is marked as not_owned when some other scheduler is responsible
for the corresponding subtree.

e All other nodes are considered disputed. When a leaf sequence is inserted underneath
a disputed node, that leaf sequence is considered disputed.

48

The second issue has to do with the fact that the insert|g(v, wut(E)) function may
end up inserting a different the sequence (but an equivalent one)than v. This means that
two leaf entries, while different, may be equivalent. Therefore, the ownership of disputed
nodes cannot be resolved by simply checking whether those nodes exists in the execution
tree. However, we can modify insert|g (v, wut(E)) to insert execution sequence within
subtrees of the execution tree, instead of wakeup trees. If a disputed sequence can be
inserted into the execution tree, then this means that no other scheduler has discovered
an equivalent execution sequence and therefore, ownership is claimed over that execution
sequence. Otherwise, this sequence is marked as not_owned.

5.2.2 Algorithm

The Controller has the same logic as with the one from parallel source-DPOR (Algorithm
3). Similarly with the source-DPOR algorithm, The Controller maintains a Frontier, which
is a set of execution sequences E, and an execution tree 7', which contains as branches the
execution sequences of the Frontier. For as long as there exists an execution sequence
at the Frontier (Frontier #), the Controller will partition its Frontier to at most N
execution sequences. Then, the Controller will try to assign all of its unassigned execution
sequences to any idle scheduler, by spawning explore_loop(E., Budget) functions. Finally,
it will block until it receives a response from a scheduler.

Algorithm 10: Optimal Frontier Partitioning - Scalable Algorithm

t Function partition(Frontier, N)

2 for all E € Frontier do

3 while total_owned_leaf_sequences(E) > 1 and size(Frontier) < N do
4 E’ < the smallest prefix of E that has a backtrack entry ;

5 v <+ the smallest (w.r.t. <) owned leaf sequence € wut(E');

6 E! + a copy of E;

7 mark v as not_owned at wut(E");

8 {Prefiz,v, Suf fiz} + split_wut_at(v, wut(E.));

9 mark Prefiz and Suf fiz as not_owned at wut(E.);

10 add FE. to Frontier;

1 return Frontier;

The partitioning phase (Algorithm 10) works pretty similarly with Algorithm 4. The
main difference here, is that when we distribute sequences from the wakeup tree, we do
not simply add them on the sleep set of the original execution sequence, but we mark
them as not owned. The reason behind this, can be seen at lines 20-21 of Algorithm 2.
After optimal-DPOR has finished exploring a wakeup tree at some execution sequence E,
the beginning process of that wakeup tree is added at the sleep set at £ and sequences
that begin with that process are removed from the remaining wakeup trees at E. In order
to keep this behavior intact, we have modified the optimal-DPOR exploration phase, so
that when encountering nodes, whose every child is not_owned, those nodes are added to
the sleep set and the appropriate sequences are removed from the wakeup tree.

The scheduler exploration loop (Algorithm 11)mostly remains the same. We have sim-
ply changed the termination check to reflect the change in the concept of ownership. Lets
not here, that when get_next_execution_sequence(E’) finds nodes that are of not_owned
ownership, the initial process p of those nodes gets added to the appropriate sleep set and
the sequences of form begin p.w get removed from the appropriate wakeup tree. In other
words, this is responsible for lines 20-21 of Algorithm 2.

49

Algorithm 11: Scheduler Exploration Loop - Scalable optimal-DPOR

1 Function explore_loop(Ey, Budget)

2 StartTime < get_time();

3 E + FEy;

4 repeat

5 E' + explore(E);

6 E' « plan_more_interleavings(E');

7 E + get_next_execution_sequence(E");

8 CurrentTime < get_time();

9 until CurrentTime — StartTime > Budget or (ownership(E) #
owned and WuT'(E) has no owned sequences);

10 send £ to Controller ;

The pseudocode of the handling of the scheduler response remains the same as in
Algorithm 6. However the update_execution_tree(E,T) function changes. This functions
iterates over the execution sequence and the execution tree simultaneously, and for any
disputed wakeup tree leaves that are found in the execution sequence a modified version
of insert) (v, wut(E)) is called. This version tries to insert the leaves from the wakeup
trees of the execution sequence to the execution tree. If it succeeds, it claims ownership
over this leaf and over every equivalent leaf. If no insertion is made, this means that some
other scheduler has claimed ownership over an equivalent leaf and therefore, this leaf is
marked as not_owned in the execution sequence F.

When updating the execution tree, we also delete parts from the execution tree that
have already been explored. Lastly, the load balancing mechanism remains the same with
the parallel source-DPOR algorithm.

50

Chapter 6

Implementation Details

In Chapter 4 we described how the Source-DPOR and Optimal-DPOR algorithms can be
parallelized, by using multiple schedulers to explore different interleavings concurrently.
In order to accomplish this, some modification are to be made. Here we summarize those
necessary modifications.

We should briefly describe how the scheduler works in the sequential implementation.
The scheduler starts by exploring completely an arbitrary interleaving (with a maximal
sequence E), through the function explore/1. It continues by calling plan_more_interleaving/1,
in order to detect the races of the explored interleaving and plan the exploration of future
interleavings according to the logic of the used algorithm. Let’s assume that we must
explore a sequence E’.p, where E’ is a prefix of E and p a process. The next invocation
of explore/1 will reset all actor processes, to force them back to their initial state, and then
it will replay the prefix E’ to recreate the global state at E’, without completely recreating
the events in the prefix. After the replay is done, the processes in the backtrack (or in
the wakeup tree) will be scheduled and finally the remaining events will be scheduled
arbitrarily so as no more processes are enabled. The scheduler will then try and plan
more interleavings. We are finished when there are no more interleavings left to explore
(or until an error is found if the option keep_going is set to false).

Let us, also, describe the main datatypes used in the scheduler:

e cvent(): corresponds to the event e of a process p, according to our notation. It con-
tains the Erlang Pid (process identifier) of the actor process p, as well as information
about the code (e.g. the BIF) of this specific event.

o #event_tree{}: refers to either the backtrack or the wakeup tree at a specific point.

o #trace_state{}: holds information about an execution step of an execution sequence
E, such as the backtrack (or the wakeup tree) and the sleep set at this point.

o #scheduler_state{} a record that contains information regarding the state of the
scheduler such as the algorithm used and, most importantly, the current trace, which
is a list of #trace_state{} records. This list roughly corresponds to the execution se-
quence E as defined in our framework.

6.1 Dealing with Processes

In the sequential Concuerror, for each process of a tested program, the scheduler needs to
spawn only one process. The scheduler will then control the execution of the processes
of a program to produce different interleavings. In order to concurrently explore different
interleavings, for every process in the tested program, each parallel scheduler must spawn
its own process. This technically means that we should have different Erlang processes that
correspond to the same process of the tested program. Erlang processes are characterized
by their Pid, which is globally unique. The Pid of a process is also used in Concuerror to

51

identify a process and, therefore, characterize a trace. When transferring traces between
schedulers any Pid found anywhere in the trace should change to reflect the Pids of the
different schedulers.

This means that a mapping should be created between the Pids of the different sched-
ulers. This mapping can be established through the symbolic names that Concuerror assigns
to the tested process with the following logic:

“pP” it p is the initial process

Symbol(p) = { Symbol(q).i if p is the iy, child of ¢

However, creating such mappings is not enough to guarantee that a trace can be trans-
ferred between different schedulers. It is important that the same execution sequence leads
to the same global state regardless of the scheduler that explores it. Specifically, Erlang
gives the ability to compare Pids. For instance, the ordering of two Pids could change
the outcome of a branch in a program. This could result in the same trace leading to
different global states on different schedulers. What is more, through the use of the BIF
pid_to_list/1, a Pid could exist in the form of a string in some trace and as a result we
would have to try and parse every string in a trace to check whether is refers to a Pid.

We solve these issues by having each scheduler run on its own Erlang node. It is
possible for two processes, located on different nodes, to have the same local Pid. While
trying to implement such a mechanism, we have encountered two main issues:

e Erlang does not give the option to request specific Pids. Nevertheless, the Erlang
VM of a node assigns Pids in a sequential ordering. For example, after spawning
a process with < 0.110.0 > as a local Pid, then next process spawned in that node
would have a Pid of < 0.111.0 >. We can use this to preemptively spawn processes
on different nodes with the same Pid, by creating a process_spawner. We require
that nothing besides our schedulers runs on our nodes and therefore, there will be
no interference with sequence of the spawned Pids on the node. Firstly, we must
reach a consensus between the different schedulers as to the initial local Pid. This
consensus can be achieved by having each scheduler send to the process_spawner the
first available local Pid in their node (we can get this by spawning a dummy process).
The process_spawner chooses the maximum local Pid and sends it to all the schedulers.
The schedulers can then spawn a process with this maximum Pid by spawning and
killing dummy processes until they reach the requested Pid. Then they can spawn a
specified (by the user) amount or processes preemptively. The i, processes spawned
this way on different nodes, will all have the same local Pid. Thanks to that, we can
have different processes on different nodes with the same local Pid that corresponds
to the same symbolic process.

e Simply sending a trace between schedulers on different nodes will result in the Erlang
VM changing every Pid on the trace to their global values. Those values, however,
are unique. We can avoid this by transforming every Pid on that trace to a string (by
using the pid_to_list/1 BIF) before sending the trace. When we send the transformed
trace the VM will not interfere with the transformed Pids. The local Pids can then
be recovered from the receiving scheduler by using the list_to_pid/1 BIF. These local
Pids will refer to processes with the same symbolic name on different nodes.

6.2 Execution Sequence Replay

Even after fixing the Pid issue, replaying traces on different schedulers is not going to
work. There are two basic reasons behind this.

52

© 00 T s W N -

S

Firstly, during the execution of certain events (such as events related to ETS tables or
spawning) Concuerror uses various ETS tables to keep track of specific information. When
Concuerror explores a trace in replay mode, it makes sure that such information exists and
drives the tested processes to the appropriate state. Therefore, when Concuerror explores
a trace it creates some side-effects on the its global state. Those side-effects will not exist
on a different Erlang node, since ETS tables are not shared between nodes.

-
Pid = spawn(fun() ->

receive
exit ->
ok
end
end),
Lambda =
fun() ->
Pid ! exit
end.

Listing 6.1: Environment variables

Secondly, user defined lambda functions can have some environment variables. The
value of those variables is immutable once the lambda function is defined. In Listing
6.1, if a trace contains an event that applies this function, this event will not be able
to be properly replayed by a scheduler other than the one that created it, since the Pid
environment variable cannot be changed. The only reasonable way to solve this is to
change how replaying works.

Specifically, we need to have two different replay modes: pseudo and actual. Pseudo
replay is used when replaying traces that were created by the same scheduler and works
exactly like the replay of the sequential Concuerror. Actual replay recreates the events
and the side-effects of a trace and is used for replaying interleavings received from other
schedulers. On built-in events, we achieve this by setting an actual_replay flag to true and
by making changes on how the concuerror_callback module handles those replays. On other
events, we set their event_info value to undefined forcing those events to be recreated.

53

Chapter 7

Performance Evaluation

In this chapter, we are going to present the performance results of our parallel source-DPOR
and optimal-DPOR algorithms, implemented in Concuerror. We are going to evaluate our
results on some “standard” and synthetic benchmarks that are normally used to test DPOR
algorithms, as well a real erlang program. Finally, we will try to explain the behavior of
the parallel program as reflected in those charts, drawing related conclusions whenever
possible.

7.1 Tests Overview
First we are going to give a brief overview of the programs tested:

e indexer N: This test uses a Compare and Swap (CAS) primitive instruction to check
if a specific element of a matrix is set to 0 and if so, set it to a new value. This
is implemented in Erlang by using ET'S tables and specifically the insert_new/2
function. This function returns false if the key of the inserted tuple exists (the entry
is set to 0) or it inserts the tuple if the key is not found. N refers to the number of
threads that are performing this function.

e readers N: This benchmark uses a writer process that writes a variable and N reader
processes that read that variable.

e writers N: This is a modification of the readers test. Here we have a reader process
that reads a variable and N writer processes that write that variable. The fact that
we have many writers creates more races and therefore more work for our program.

e lastzero N: In this test we have N + 1 processes that read and write on an array
of N + 1 size, which has all its values initialized with zero. The first process reads
the array in order to find the zero element with the highest index. The other N
processes read an array element and update the next one.

e rush hour: a program that uses processes and ETS tables to solve the Rush Hour
puzzle in parallel, using A*search. Rush hour is a complex but self-contained (917
lines of code) program.

7.2 Performance Results

The benchmarks were performed on a multiprocessor with 64 AMD Opteron 6276(2.3
GHz) cores, 126 GB of memory, running Linux 4.9.0-8amd64 and running the later Erlang
version (Erlang/OTP 21). While running our tests, we are using the —keep_going flag to
continue exploring our state space, even after an error is found. We do this so we can
evaluate how fast the complete state space gets explored.

55

Benchmark Traces for Traces for Time for Time for parallel Time for Time for parallel

‘ source-DPOR | optimal-DPOR | source-DPOR | source-DPOR with 1 scheduler | optimal-DPOR | optimal-DPOR with 1 scheduler
lastzero 11 60073 7168 49m8.510s 53mb59.169s 14m8.266s 17m50.494s
indexer 17 262144 262144 186m8.136sec 205m24.872sec 193mb54.320sec 252m21.033sec
readers 15 32768 32768 37m68.865s 46m28.711s 51m40.792s 67m50.643s
rush hour 46656 46656 52m36.889s 56m3.521s 51m11.184s 58m32.962s

Table 7.1: Sequential performance of source-DPOR and optimal-DPOR on four bench-
marks.

Table 7.1 contains information about the traces explored and the duration of those
explorations for the sequential versions of source-DPOR and optimal-DPOR, as well the
duration of the parallel versions with one scheduler, a fragmentation value of one, and a
Budget of 10000.

Lets also present graphs depicting the execution time and the speedup (7xisL) of the

parallel

source-DPOR and optimal-DPOR algorithms for different numbers of schedulers and for
various test cases.

3500 T T T T T T
3000

2500

2000

Time (sec)

Source-DPOR
Optimal-DPOR

1500

1000

4 8

500

i L I I L L
12 16 20 24 28 32
Schedulers

4 8 12 16 20

Schedulers

24 28

Figure 7.1: Performance of readers 15 with Budget of 10000.

3500 T T T T T T

3000

2500
m
@ — Source-DPOR
— 2000 - . X
g — Optimal-DPOR
-': |- .

1500

1000

500 | | '|‘ '|‘ 1~ ’I‘ 1~ 10 1 1] |]] | |

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
Schedulers Schedulers

Figure 7.2: Performance of readers 15 with budget of 30000.

56

PO 7 T T T
3000

2500

2000

Time (sec)

1500

1000

500

V7

Speedup

4 8 12 16 20 24 28
Schedulers

Figure 7.3: Performance of rush hour
optimal.

Source-DPOR
Optimal-DPOR

0 i i i | i i | |
32 0 4 8 12 16 20 24 28 32
Schedulers

with Budget of 10000 for source

300 T
2500
2000

1500

Time (sec)

1000

500

and 30000 for

16 — T T T T 1

Speedup

0 i i

4 8 12 16 20 24 28
Schedulers

Figure 7.4: Performance of lastzero 11
optimal.

Source-DPOR
Optimal-DPOR

32 0 4 8 12 16 20 24 28 32
Schedulers

with Budget of 10000 for source

and 30000 for

57

12000 — 4+ r——————— 25

10000 0l

8000 ;
150

6000

Speedup

— Source-DPOR
— Optimal-DPOR

Time (sec)

4000

2000

o) N S S S S 0 R S S N S S
4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Schedulers Schedulers

Figure 7.5: Performance of indexer 17 with Budget of 10000 for source and 30000 for
optimal.

7.3 Performance Analysis

As we can see in our charts, our parallel implementation, both of source-DPOR and of
optimal-DPOR, significantly reduces the testing time of our test cases. Namely, in the cases
of rush hour and indexer, source-DPOR provides a speedup by a factor of around 1.8 for
2 schedulers and of 3.5 for 4 schedulers and 7.1 for 8 schedulers. In these benchmarks,
optimal-DPOR provides a speedup of around 1.7, 3.4 and 6.8 for 2, 4 and 8 schedulers
respectively. This makes our parallel implementations highly usable in personal computers.

Additionally, source-DPOR achieves a decent scalability in test cases like rush hour,
lastzero 11 and indexer 17. Particularly, with 32 schedulers we manage to speed up Con-
cuerror by a factor of 18.6 for rush hour and 20.3 for indexer 17. However, through
the scalability charts we can notice that with more schedulers the scalability of those test
cases starts to decline. This happens because we are using a centralized Controller, which
becomes a bottleneck, since the more the schedulers the higher the chance the Controller
will be busy and therefore, unable to distribute work. The most important reason behind
this drop in scalability though, is the fact that with more available schedulers, the execu-
tion sequences of the frontier are partitioned more finely and therefore, the subtrees of the
state space assigned to each scheduler, are also more finely grained. A more fine grained
assignment leads to the schedulers exploring their assigned subtrees faster and having
more races found outside their assigned subtrees. Consequently, the communication with
the Controller is more frequent. This situation is problematic for two reasons: the commu-
nication between a scheduler and the Controller has a non-negligible overhead and when
the amount of communications between the schedulers and the Controller increases, the
Controller becomes an even bigger bottleneck. As such, we come to the conclusion that a
test case cannot scale beyond a certain point based on the number of its interleavings.

In the case of optimal-DPOR, while we still get decent speedups and scalability, the
algorithm seems to stop scaling faster than source-DPOR. For instance, optimal-DPOR
with 32 schedulers achieves a speedup of 17.3 for indexer 17, while for rush hour, it has
a speedup of 13.4, even though that with 24 schedulers it has a speedup of 15.3. We
can notice here the scalability of the algorithm to start to break. Therefore, the parallel
optimal-DPOR performs worse than parallel source-DPOR. This behavior is expected since:

e In source-DPOR, schedulers would have a subtree rooted at an execution of form

58

E.p (where p is a process) assigned to them. However, in optimal-DPOR schedulers
are assigned subtrees rooted at an execution sequence of form E.w (where w is
an sequence of processes). Therefore, the subtrees of the state space assigned to
schedulers, in optimal-DPOR, are smaller compared to the ones from source-DPOR.
This leads to optimal-DPOR encountering more backtrack entries that have a disputed
ownership and therefore, optimal-DPOR has to communicate with the Controller
more frequently.

e In source-DPOR, for each disputed backtrack entry, the Controller simply checks
whether that entry exists in its execution tree. However, in the case of optimal-
DPOR, the Controller tries to insert a sequence of processes into the execution tree.
This leads to the Controller of the optimal-DPOR having a higher complexity.

Consequently, in optimal-DPOR, our bottleneck i.e., the Controller, is not only slower,
but also there is an increased communication with it. This causes optimal-DPOR to be less
scalable than source-DPOR.

From Figure 7.1 we notice that the scalability of readers 15 breaks significantly faster,
compared to that of the other benchmarks, despite the fact that readers 15 does not have
much less explored traces than lastzero 11 (Table 7.1). While trying to figure out the
reasons behind this behavior, we have produced a graph that shows how many times the
schedulers communicated with the Controller and why such a communication occurred,
depending on the number of the schedulers. In Graph 7.6, we can see that our schedulers
exceeding their allotted budget, plays a major factor in the communication towards the
Controller. To try and measure the impact of the budget, we tried increasing the budget
for both algorithms to 30000ms. The resulting execution times can be seen in Graph
7.2. We notice, source-DPOR performs worse with a reduced budget, due to the fact that
its schedulers become more imbalanced, since the Controller repartitions the exploration
frontier less frequently. However, optimal-DPOR starts to perform better with an increased
budget. As it can be seen from Graphs 7.6 and 7.7, the reason for this increase is that
optimal-DPOR also finds disputed entries in readers 15. Finding disputed entries causes
communication with the Controller, which also leads to the frontier getting repartitioned.
Therefore, optimal-DPOR can have a larger budget without affecting its load balance, since
the extra communication makes up for it.

2500 . Solu rcel-DPQR . Oplflmall-DPIOR .

2000

1500 EE Budget Exceeded

[0 Disputed Entry Found
I Finished

1000

500

0
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

Schedulers Schedulers

Figure 7.6: Number of times schedulers stopped their execution with a Budget of 10000.

59

1600

Source-DPOR Optimal-DPOR
1400 -

1200

1000 -

EEl Budget Exceeded
{ |0 Disputed Entry Found
Il Finished

800 |-

600 -

400 +

200 -

0
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

Schedulers Schedulers

Figure 7.7: Number of times schedulers stopped their execution with a Budget of 30000.

7.4 Final Comments

When there are no sleep-set blocked interleavings the sequential source-DPOR can run
faster than the optimal-DPOR. In the case of readers15, for instance, the sequential source-
DPOR is already faster by the optimal algorithm by around 13 minutes. If we combine
this with speedup of the parallel version, the benefit of our parallelization becomes clear.

Still, even when we have a significant amount of sleep-set blocked interleavings, like
in the case of lastzeroll, our parallel source-DPOR can fairly easily catch up with the
optimal-DPOR. Specifically, the optimal algorithm has an execution time of 23m32.843s
and explores 7168 interleavings, while the source-Algorithm has an execution time of
50m39.201s and explores 60073 interleavings. By using two schedulers, the runtime of
source-Algorithm drops to 26m33.051s and with four schedulers to 13m19,016s. As we
add schedulers source-DPOR will outperform the optimal algorithm even more.

60

Chapter 8

Concluding Remarks

In this diploma thesis, we presented the parallelization of Concuerror. In order to paral-
lelize Concuerror, we had to develop parallel versions for its two main algorithms: source-
DPOR and optimal-DPOR. Parallelizing the optimal-DPOR algorithm appeared to be partic-
ularly daunting. What is more, we also had to overcome various implementation challenges
while making it possible for Concuerror to explore multiple interleavings in parallel.

We evaluated our algorithms by using parallel Concuerror to test various programs.
During this evaluation, we discovered that our algorithms provide significant speedup on
most of our benchmarks. Furthermore, our implementation is able to scale up to at least
32 schedulers, depending on the benchmark. We also noticed that parallel source-DPOR
algorithm is more scalable than the parallel optimal-DPOR algorithm, which was to be
expected.

However, there is still work to be done:

e Developing a parallel implementation of Concuerror that works within a single Erlang
node, even if it restricts the use of Erlang Pids within the tested programs. This
would serve as a lightweight alternative and more importantly, allow for using the
sequential Concuerror to test and verify our implementation.

e Test and benchmark our implementation in a distributed setting.
e Modifying our parallel implementation to work with optimal-DPOR with observers.

e Examining and implementing bounding techniques on the parallel DPOR algorithms.

61

Bibliography

[Abdu14]

[Abdu15]

[Arms07]

[Aron18]

[Chri13]

[Clar99]

[Flan05]

[Gode96]

[Gode97]

[Gode05]

[Goto11]

Parosh Abdulla, Stavros Aronis, Bengt Jonsson and Konstantinos Sagonas,
“Optimal Dynamic Partial Order Reduction”, in Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
14, pp. 373-384, New York, NY, USA, 2014, ACM.

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson,
Carl Leonardsson and Konstantinos Sagonas, “Stateless Model Checking for
TSO and PSO”, in Proceedings of the 21st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems - Volume 9035, pp. 353—-367,
Berlin, Heidelberg, 2015, Springer-Verlag.

Joe Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic
Bookshelf, 2007.

Stavros Aronis, Effective Techniques for Stateless Model Checking, Ph.D. thesis,
2018.

M. Christakis, A. Gotovos and K. Sagonas, “Systematic Testing for Detecting
Concurrency Errors in Erlang Programs”, in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pp. 154-163, March
2013.

E.M. Clarke, O. Grumberg, M. Minea and D. Peled, “State space reduction using
partial order techniques”, International Journal on Software Tools for Technology
Transfer, vol. 2, no. 3, pp. 279-287, Nov 1999.

Cormac Flanagan and Patrice Godefroid, “Dynamic Partial-order Reduction for
Model Checking Software”, in Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL *05, pp. 110-121, New
York, NY, USA, 2005, ACM.

Patrice Godefroid, Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996.

Patrice Godefroid, “Model Checking for Programming Languages Using
VeriSoft”, in Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 97, pp. 174-186, New York, NY,
USA, 1997, ACM.

Patrice Godefroid, “Software Model Checking: The VeriSoft Approach”, Form.
Methods Syst. Des., vol. 26, no. 2, pp. 77-101, March 2005.

Alkis Gotovos, Maria Christakis and Konstantinos Sagonas, “Test-driven Devel-
opment of Concurrent Programs Using Concuerror”, in Proceedings of the 10th
ACM SIGPLAN Workshop on Erlang, Erlang 11, pp. 51-61, New York, NY, USA,
2011, ACM.

63

[Kurs98]

[LeiO6]

[Matt88]

[Mazu87]

[Moor06]

[Musu08]

[Sims11]

[Sims12]

[Valm91]

[Vird96]

[YangO7]

[Yang08]

64

R. Kurshan, V. Levin, M. Minea, D. Peled and H. Yenigiin, “Static partial order
reduction”, in Bernhard Steffen, editor, Tools and Algorithms for the Construction
and Analysis of Systems, pp. 345—357, Berlin, Heidelberg, 1998, Springer Berlin
Heidelberg.

Yu Lei and Richard H. Carver, “Reachability Testing of Concurrent Programs”,
IEEE Trans. Softw. Eng., vol. 32, no. 6, pp. 382—403, June 2006.

Friedemann Mattern, “Virtual Time and Global States of Distributed Sys-
tems”, in PARALLEL AND DISTRIBUTED ALGORITHMS, pp. 215-226,
North-Holland, 1988.

Antoni Mazurkiewicz, “Trace theory”, in W. Brauer, W. Reisig and G. Rozenberg,
editors, Petri Nets: Applications and Relationships to Other Models of Concurrency,
pp- 278-324, Berlin, Heidelberg, 1987, Springer Berlin Heidelberg.

G. E. Moore, “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.”, IEEE
Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, Sept 2006.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar and Iulian Neamtiu, “Finding and Reproducing
Heisenbugs in Concurrent Programs”, in Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’08, pp. 267-280,
Berkeley, CA, USA, 2008, USENIX Association.

J. Simsa, R. Bryant, G. Gibson and]. Hickey, “Efficient Exploratory Testing of
Concurrent Systems”, CMU-PDL Technical Report, vol. 113, November 2011.

Jirf Simsa, Randy Bryant, Garth A. Gibson and Jason Hickey, “Scalable Dynamic
Partial Order Reduction”, in RV, 2012.

Antti Valmari, “Stubborn sets for reduced state space generation”, in Grzegorz
Rozenberg, editor, Advances in Petri Nets 1990, pp. 491-515, Berlin, Heidelberg,
1991, Springer Berlin Heidelberg.

Robert Virding, Claes Wikstrom and Mike Williams, Concurrent Programming in
ERLANG (2Nd Ed.), Prentice Hall International (UK) Ltd., Hertfordshire, UK,
UK, 1996.

Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan and Robert M. Kirby, “Dis-
tributed Dynamic Partial Order Reduction Based Verification of Threaded Soft-
ware”, in Proceedings of the 14th International SPIN Conference on Model Checking
Software, pp. 58-75, Berlin, Heidelberg, 2007, Springer-Verlag.

Y. Yang, X. Chen and G. Gopalakrishnan, Inspect: A Runtime Model Checker for
Multithreaded C Programs, University of Utah Tech, 2008.

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Algorithms
	1. Introduction
	1.1 Aim of this Thesis
	1.2 Overview

	2. Preliminaries
	2.1 The Erlang Language
	2.1.1 Concurrent Erlang
	2.1.2 Distributed Erlang

	2.2 Testing Concurrent Programs
	2.3 Framework
	2.3.1 Abstraction Model
	2.3.2 Event Dependencies
	2.3.3 Independence and Races

	2.4 Concuerror Overview
	2.4.1 Instrumenter
	2.4.2 Scheduler
	2.4.3 Logger

	3. Dynamic Partial Order Reduction
	3.1 Basic DPOR Concepts
	3.2 Source Sets
	3.3 Source-DPOR
	3.4 Wakeup Trees
	3.4.1 Operations on Wakeup Trees

	3.5 Optimal-DPOR

	4. Parallelizing source-DPOR Algorithm
	4.1 Existing Work
	4.2 Parallel source-DPOR
	4.2.1 Basic Idea
	4.2.2 Algorithm
	4.2.3 Load Balancing
	4.2.4 A Simple Example

	5. Parallelizing optimal-DPOR Algorithm
	5.1 Parallel optimal-DPOR - A First Attempt
	5.1.1 Basic Idea
	5.1.2 Algorithm
	5.1.3 Example
	5.1.4 Performance Evaluation
	5.1.5 Performance Analysis

	5.2 Scalable Parallel optimal-DPOR
	5.2.1 Basic Idea
	5.2.2 Algorithm

	6. Implementation Details
	6.1 Dealing with Processes
	6.2 Execution Sequence Replay

	7. Performance Evaluation
	7.1 Tests Overview
	7.2 Performance Results
	7.3 Performance Analysis
	7.4 Final Comments

	8. Concluding Remarks
	Bibliography

